

Institute of Energy and Mechanical Engineering named after A. Burkitbayev Department of «Technological machines and equipment»

EDUCATIONAL PROGRAM7M07111 «Digital Engineering of Machines and Equipment»

Code and classification of the field of 7M07 «Engineering, manufacturing

education: and civil engineering»

Code and classification of training 7M071 «Engineering and engineering

directions: trades»

Group of educational programs: M103 Mechanics and metal working

Level based on NQF: 7
Level based on IQF: 7

Study period: 2 years Amount of credits: 120

Almaty 2025

Educational program 7M07111 "Digital Engineering of Machines and Equipment" was approved at the meeting of K.I. Satbayev KazNRTU Academic Council Minutes # 12 dated «22» April 2024

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council Minutes # 6 dated «19» April 2024

Educational program 7M07111 "Digital Engineering of Machines and Equipment" was developed by Academic committee based on direction 7M071 «Engineering and engineering trades»

Full name	Academic degree / academic title	Position	Place of work	Signature
Chairperson of A	cademic Committee:			
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satbayev	15
Teaching staff:				
Kaliev Bakytzhan	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satbayev	Dy
Bortebayev Saiyn	Candidate of Technical Sciences,	Associate Professor	KazNRTU named after K.I. Satbayev	AS
Employers:				Aho
Shakenov Aman	PhD	Chief Executive Officer	Borusan Cat Kazakhstan LLP	M IW
Students				/
Tynyshtyk Erasyl		4th year student	KazNRTU named after K.I. Satbayev	Chaf

Table of contents

	List of abbreviations and designations	4
1.	Description of educational program	5
2.	Purpose and objectives of educational program	5
3.	Requirements for the evaluation of educational program learning	7
	outcomes	
4.	Passport of educational program	9
4.1.	General information	9
4.2.	Relationship between the achievability of the formed learning	11
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	24

List of abbreviations and designations

NCJS KazNRTU named after K. I. Satbayev – NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I. SATBAYEV»;

SOSE – State obligatory standard of education of the Republic of Kazakhstan; Kazakhstan; EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

CED – catalog of elective disciplines;

UC – university component;

CC – component of choice;

NQF – National Qualifications Framework; S

QF – Sectoral Qualifications Framework;

LO – learning outcomes;

KC – key competencies;

SDGs – Sustainable Development Goals.

1. Description of educational program

The educational program (EP) of higher vocational education ensures the implementation of the state educational standard taking into account the type of higher education institution, the educational needs and requests of students, and includes a working curriculum, syllabuses (work programs of training courses), disciplines (modules) and other materials the quality of the training of students, as well as the program of scientific and pedagogical practice, the schedule of educational schedule and methodological materials to ensure the implementation of relevant educational technology.

The main idea of the educational program is to implement a continuous process of preparing the scientific and pedagogical and professional personnel of the new generation who are capable of working to transform the new scientific potential of Kazakhstan from raw materials to innovative through the development and implementation of sustainable trends in the field of digital service and operational services.

The uniqueness of the study program "Digital Engineering of Machinery and Equipment" is determined by the competencies that the master has, having completed his education in this program.

The Master's Program is designed to facilitate the effective training of future specialists in the field of technical services on a comprehensive and integrated foundation. It is aimed at a deep understanding of the role of digital monitoring in the operation of machines and equipment in the mining, metallurgical, and oil and gas industries and their timely service at a high level.

The program prepares masters for activities in areas such as digital engineering of machinery and equipment, as well as strategic planning, analytical and advisory activities.

At the master's level, training in the specialty 7M07111 – Digital Engineering of Machinery and Equipment is carried out along trajectories involving the implementation of educational programs for training personnel in the oil, mining and metallurgical sectors with advanced technical, analytical and prognostic training.

2. Purpose and objectives of educational program

Purpose of EP: The objective of the educational program is to train highly qualified and competitive specialists with world-class competencies in digital technologies aimed at improving the operation and maintenance of machinery and equipment in the mining and metallurgical, as well as oil and gas industries. Particular attention is given to the implementation of digital solutions in the industry, increasing energy efficiency of equipment, and optimizing production processes in line with the principles of responsible consumption and production. The educational program focuses on developing competencies in graduate students that contribute to the

development and implementation of technologies aimed at reducing the carbon footprint and enhancing the efficiency of industrial enterprises.

Tasks of EP:

- **Task 1:** Mastering methods of digital transformation of production processes, including data analysis and the application of artificial intelligence in equipment monitoring (SDG 9).
- Task 2: Developing skills in managing energy efficiency and operating equipment based on modern digital technologies (SDG 7, 12).
- **Task 3:** Acquiring the ability to predict equipment failures, implement predictive technologies, and improve the reliability of industrial systems (SDG 9, 12).
- **Task 4:** Developing solutions for extending the lifecycle of equipment and reducing production waste (SDG 12).
- **Task 5:** Integrating the principles of sustainable design and technical system management into the educational process (SDG 7, 9, 12, 13).

3. Requirements for evaluating the educational program learning outcomes

A graduate who has mastered the master's degree program should have the following general professional competencies:

- the ability to independently acquire, comprehend, structure and use in professional activities new knowledge and skills, develop their innovative abilities;
- the ability to independently formulate research goals, establish the sequence of solving professional tasks;
- the ability to put into practice the knowledge of fundamental and applied sections of the disciplines that determine the direction (profile) of the graduate program;
- the ability to professionally choose and creatively use modern scientific and technical equipment to solve scientific and practical problems;
- the ability to critically analyze, represent, protect, discuss and disseminate the results of their professional activities;
- Possession of skills for the preparation and execution of scientific and technical documentation, scientific reports, reviews, reports and articles;
- readiness to lead the team in their professional activities, tolerantly perceiving social, ethnic, confessional and cultural differences;
- readiness for communication in oral and written forms in a foreign language for solving problems of professional activity.

A graduate who has mastered the master's program must have professional competencies corresponding to the types of professional activity to which the master's program is oriented:

research activities:

- the ability to form diagnostic solutions to professional problems by integrating the fundamental sections of science and specialized knowledge gained in mastering the master's program;

- the ability to independently conduct scientific experiments and research in the professional field, summarize and analyze experimental information, draw conclusions, formulate conclusions and recommendations;
- the ability to create and explore models of the objects under study based on the use of in-depth theoretical and practical knowledge in the field of digital diagnostics of the state of equipment of mining, metallurgical and oil and gas production;
 - research and production activities:
- the ability to independently carry out production and research and production of field, laboratory and interpretation work in solving practical problems;
- ability to professional exploitation of modern field and laboratory equipment and devices in the field of mastered master programs;
- the ability to use modern methods of processing and interpreting complex information to solve production problems;
 - project activity:
- the ability to independently draw up and submit research and development projects;
- readiness to design complex research and production works in solving professional problems;
 - organizational and management activities:
- readiness to use the practical skills of organizing and managing research and production works in solving professional problems;
- readiness for practical use of regulatory documents in the planning and organization of research and production work;
 - scientific and educational activities:
 - the ability to conduct seminars, laboratory and practical classes;
- ability to participate in the management of scientific and educational work of students in the field of digital technologies for diagnosing the state of the equipment of mining, metallurgical and oil and gas production.

When developing a master's program, all general cultural and general professional competencies, as well as professional competences related to the types of professional activities that the master's program is focused on, are included in the set of required mastering program results.

4. Passport of educational program

4.1. General information

No	Field name	Comments
1	Code and classification of the field of	7M07 «Engineering, manufacturing and civil
	education	engineering»
2	Code and classification of training directions	7M071 «Engineering and engineering trades»
3	Educational program group	M103 «Mechanics and metal working»
4	Educational program name	Digital Engineering of Machines and Equipment
5	Short description of educational	The educational program "Digital engineering of
	program	machines and equipment" covers the specialty
		"Technological machines and equipment" in the
		following industries:
		- metallurgical machines and equipment;
		- mining machines and equipment;
		- machines and equipment of the oil and gas industry
6	Purpose of EP	The purpose of the educational program is to train
		scientific, technical and engineering personnel with
		world-class competencies in the field of digital
		technologies, based on the integration of fundamental physico-mechanical and experimental-oriented
		engineering and technical education with research and
		development for oil and gas, mining and metallurgical
		enterprises
7	Type of EP	new
8	The level based on NQF	7
9	The level based on IQF	7
10	Distinctive features of EP	no
11	List of competencies of educational	Communication skills
	program	General engineering competencies
		Professional competencies
		Engineering and computer competencies
		Engineering and working competencies
		Socio-economic competencies
10		Special professional competencies
12	_	LO1: Demonstrate a high level of professionalism in
	program	performing research and design tasks in the field of digital services accompanying the operation of
		digital services accompanying the operation of technological machines, including related areas
		requiring informed choice of research methods. Apply
		digital technologies to analyze and improve machine
		performance in a sustainable manner (SDGs 9 and 12).
		LO2: Use the acquired knowledge to solve problems in
		the sphere of information and communication,
		organizational, management and service activities,
		realizing the responsibility for professional decisions.
		Implement methods of energy saving and rational use of
		resources in technical systems in accordance with the
		principles of sustainable development (SDGs 7 and 12).
		LO3: To have developed personal qualities, as well as

	scientific, pedagogical and professional competences
	necessary for the development of modern digital
	technical engineering in the country (region) in the field
	of maintenance and service industry and effective
	organization of production processes. Possess the skills
	of assessment in industrial processes and develop
	measures for its reduction in accordance with the goals
	of sustainable development. (SDGs 12 and 13).
	LO4: Demonstrate knowledge in the sphere of
	production and technological activities aimed at
	implementation and operation of modern digital
	solutions at the regional level. Analyze and model
	equipment operation processes taking into account
	environmental safety requirements and sustainable
	development principles (SDGs 9 and 12).
	LO5: Select methods of obtaining relevant information
	required to solve professional tasks related to integration
	of knowledge within their area of work. Formulate
	strategies to extend the life cycle of equipment and
	reduce waste in line with the Sustainable Development
	Goals (SDG 12).
	LO6: Allocate time for self-education and continuous
	professional development throughout an academic or
	professional career. Apply Internet of Things (IoT) and
	digital twin technologies to improve the reliability and
	efficiency of technical systems in line with the
	principles of sustainable development (SDG 9).
	LO7:To raise the intellectual and general cultural level,
	to improve the moral and physical development of one's
	personality in the competence of professional activity
	LO8: Speak a foreign language to the extent necessary
	to obtain professional information from scientific
12 Education forms	Sources
13 Education form14 Period of training	full
15 Amount of credits	2 years 120
16 Languages of instruction	Kazakh, Russian, English
17 Academic degree awarded	Master of Technical Sciences
18 Developer(s) and authors	Academic Affairs Committee
10 Developer(s) and additions	Academic Arians Committee

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

No			Number	Generated learning outcomes (codes)							
	Name of the discipline	Short description of the discipline	of credits	LO1	LO2	LO3	LO4	LO5	LO6		LO8
		Cycle of basic	disciplines	<u> </u>	II.	l				•	
		University co	_								
1		The course is designed for	3								V
		undergraduates of technical specialties									
		to improve and develop foreign language									
		communication skills in professional and									
		academic fields. The course introduces									
	Foreign language	students to the general principles of									
	(professional)	professional and academic intercultural									
	,	oral and written communication using									
		modern pedagogical technologies.public									
		discussions; interpret and present the									
		results of scientific research in a foreign									
		language.									
2		The discipline studies the modern role	3						V	V	
		and content of psychological aspects in									
		managerial activity. The improvement of									
		the psychological literacy of the student									
		in the process of implementing									
	Davide da ave of	professional activities is considered.									
	Psychology of	Self-improvement in the field of									
	management	psychology and studying the									
		composition and structure of									
		management activities, both at the local									
		level and abroad. The psychological									
		feature of modern managers is									
		considered									

3	History and philosophy of science	The subject of philosophy of science, dynamics of science, specifics of science, science and pre-science, antiquity and the formation of theoretical science, the main stages of the historical development of science, features of classical science, non-classical and post-non-classical science, philosophy of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of science, social and moral responsibility of a scientist and engineer.	3			V			V	
4	Higher school pedagogy	Undergraduates will master the methodological and theoretical foundations of higher school pedagogy, plan and organize the processes of teaching and upbringing, master the communicative technologies of subject-subject interaction between a teacher and a master in the educational process of a university	3			V		V		
		Cycle of basic	_							
	Intellectuel Durantum	Component		1	1				.	
5	Intellectual Property Protection	Purpose of studying the discipline Formation of basic knowledge in the field of intellectual property of undergraduates, training graduates to solve professional problems related to the registration of intellectual property rights and their protection, obtaining theoretical knowledge in the field of patent science and the acquisition of practical skills in the application of	5				V		V	

		patent law as one of the components of intellectual property rights in Kazakhstan, the formation of a modern scientific outlook for undergraduates, an introduction to the methodology of scientific research vany. The main objectives of the discipline are: - The study of intellectual property and laws in the field of intellectual property						
		protection; - Mastering ways to protect the rights of intellectual property, as well						
		as the use of knowledge in the field of						
		intellectual property in organizational, managerial, design and engineering						
		activities						
6	Licensing and copyright	At discipline studying theoretical and practical preparation of the future masters concerning tehniko-legal bases of the copyright, protection "know-how" and licencing, a right protection of objects of the industrial property, drawing up and giving of patent demands and their examinations is	5				>	V
		carried out. Acquaintance to a role and value of objects and subjects of the copyright, conditions of patentability of the invention and industrial samples and possibilities of their licensing, gives the chance trained to master: sequence of						
		registration of copyrights, maintenances of copyrights; ability to protect the right of authors and the patent of owners; ability to make registration of copyrights						

		abroad; bases of a right protection and							
		"know-how" protection							
7		Purpose: the goal is to train specialists	5					V	V
,		who can effectively manage rights to the	3					'	·
		results of intellectual activity in the field							
		of science, as well as ensure their legal							
		protection and commercialization.							
	Intellectual Property and	Contents: analysis of legal protection of							
	Research	research and development results,							
		methods of commercialization of							
		scientific inventions, ethical and legal							
		aspects of scientific activity in the							
		context of IP							
8	Innovative installation	Advanced methods of installation,	5		V	V			
	and commissioning	adjustment, diagnostics of technological							
	methods for machines	equipment, innovative methods of							
	and equipment	testing, methods and types of							
		diagnostics, installation work using							
		modern methods and monitoring of the							
		technical condition (welding, rolling,							
		basic plumbing work, adjustment and							
		adjustment work)							
9	The system of full	To get acquainted with promising	5		V	V			
	maintenance	innovative technologies and techniques							
	Technological machines	in technological engineering. Expected							
	and equipment	results: Awareness of the need for							
		professional development during their							
		working life. The ability to formulate							
		problems and use heuristic methods to							
		solve them. The ability to critically use the methods of modern science in							
		practice. The ability to assess the quality of advanced technologies and equipment							
		in an expert manner. Ability to make a							
		in an expert manner. Admity to make a							

		technical and economic comparison of various modifications of technological							
10	Innovative drives of machinery and equipment	machines and equipment Formation of a system of knowledge, skills and abilities among undergraduates in the field of design, operation, maintenance and evaluation of the technical condition of industrial machine drives. Study of the features of innovative designs, layout and operating modes of mechanical, hydraulic and pneumatic drives of mining, metallurgical and oil and gas machines. Formation of skills and abilities to assess the technical condition and residual life of machine drives, apply methods for calculating design and operating	5	V					
		parameters of innovative drives of technological machines							
11	Innovative technologies for monitoring and diagnosing the state of technological machines	The course provides: concepts, terms and definitions of technical diagnostics, structure and formulation of technical diagnostics tasks, statistical methods of fault recognition, non-destructive types and methods of control, prediction of the residual life of equipment, assimilation of basic concepts, terms and definitions in the field of technical diagnostics	5		V	V			
12	Sustainable development strategies	The goal is to develop deep knowledge and competencies in the development and implementation of sustainable development strategies at various levels. The content covers a wide range of topics, ranging from global	5				V	V	

		environmental challenges such as								
		climate change, biodiversity loss and								
		natural resource depletion, to socio-								
		economic aspects including inequality,								
		health and education.								
		Cycle of profile	digainline				<u>l</u>			
		University co		5						
13		The course is aimed at familiarizing	5	v				v		V
13		students with theoretical and]	v				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V
		experimental research methods, building								
		their knowledge, skills and abilities in								
		the use of scientific research tools,								
		<u> </u>								
		methods of searching and analyzing scientific information. In the course of								
	Mathods and means of	training, undergraduates choose methods								
		of planning and organizing scientific								
		research. They will study and master the								
		mechanism of scientific search, analysis,								
		conducting experiments, organizing								
		surveys, compiling questionnaires,								
		setting up and standards for the								
		implementation of research results. They								
		receive results in the development and								
		preparation of documents for scientific								
		projects, reports, publications for								
		seminars and conferences								
14		Instruments and digital methods for	5		V	V				
		measuring temperature, pressure, flow of								
	Digital methods and	liquids and gases, linear and angular								
	means of measuring the	quantities, measurement of forces and								
	parameters of	moments, non-destructive testing of								
	technological machines	materials and substances, motion								
		parameters and composition,								
		composition of gases, chemical liquids,								

		fuel quality and oils. The choice of						
		fuel quality and oils. The choice of						
		modern technical means of measuring						
		and monitoring the parameters of						
		technological machines, depending on						
		their design and operating conditions.						
		Assessment of the reliability of						
		measuring instruments. Rules of						
		installation and operation of technical						
		measuring instruments. Types of tests of						
		technological machines - control,						
		research, parametric, delivery,						
		diagnostic, resource, etc. Test benches						
		and equipment. Assessment of the						
		technical condition of technological						
		equipment based on the test results						
15		Formation of master students '	5		V	V		
		knowledge and skills in the application						
		of digital methods for predicting the						
		technical condition and reliability of						
		objects, studying the basics of the theory						
		of diagnostics, studying the basic						
		concepts, techniques and innovative						
		methods for diagnosing the technical						
	Predictive maintenance	condition of parts, mechanisms and						
	systems for process	products. Course objectives graduate						
	equipment	students are determined by the						
		requirements of the qualification						
		characteristics of the specialty and is						
		aimed to teach undergraduates to apply						
		for digital computer technology and						
		forms of organization of diagnostics in						
		the maintenance and repair of production						
		machinery and equipment, as well as use						
		in the practice of critical assessment of						
		in the practice of critical assessment of						

		the technical condition of machinery and							
		equipment obtained with the use of							
		digital diagnostic equipment and							
		indirectly							
1.0		ž							
16		The discipline «3D modeling of	5	V		V			
		technological machines and equipment»							
		is intended for undergraduates in the							
		educational program 7M07111-«Digital							
		engineering of machines and							
		equipment» and is aimed at studying							
		modern methods and tools of spatial							
		design. While studying the basics of							
	3D modeling of	parametric and direct modeling,							
	technological machines	undergraduates will learn how to create							
	and equipment	assemblies, analyze kinematics and							
	and equipment	dynamics nodes, and prepare models for							
		production. Special attention is paid to							
		the use of CAD/CAM/CAE systems for							
		industrial design and virtual prototyping							
		of technological equipment. Mastering							
		the course will allow undergraduates to							
		develop effective engineering solutions							
		and introduce innovative technologies in							
		the engineering industry.							
		Cycle of profile	discipline	S					
		Component	of choice			•			
17		The discipline provides studying of	5		V			v	
		questions of the organization and							
	Intelligent management of technological	operation of the enterprises on service of							
		production complexes of the							
	equipment complexes	technological equipment in system of							
	equipment complexes	branch appointment. The purpose of							
		teaching - the development of the							
		methodology of management of							

				1	1		1		
		complex technological equipment of							
		industrial enterprises of mining,							
		metallurgical and oil industries and							
		methods of calculation of their							
		production capacity, as well as the study							
		of optimal control algorithms of							
		production systems in the maintenance							
		of production facilities							
18	Heattechnical equipment	The ability to integrate knowledge from	5	v		V			
	and power plants	different disciplines within and use them							
		to solve production problems, to develop							
		terms of reference for the design and							
		manufacture of electrical equipment							
19	Engineering analysis in	The discipline «Engineering analysis in	5		v	V			
	the creation and	the creation and operation of							
	operation of	technological machines» is aimed at							
	technological machines	studying the methods of engineering							
		analysis, application in the design,							
		operation and optimization of							
		technological machines and equipment.							
		Undergraduates of the educational							
		program 7M07111-«Digital engineering							
		of machines and equipment» will master							
		modern digital technologies, methods of							
		numerical analysis and computational							
		mechanics. The course examines the							
		principles of strength, thermal and							
		hydrodynamic calculations, the basics of							
		limit elements, as well as the analysis of							
		reliability and the life cycle of machines.							
		Special attention is paid to the use of							
		software complexes (CAE/CAD/CAD)							
		for the design and diagnosis of							
		equipment, which allows to increase the							

		efficiency and safety of the technology of operation.						
20	Innovative technologies in the practice of maintenance and repair of technological machines	To get acquainted with promising innovative technologies and techniques in technological engineering. Awareness of the need for professional development during their working life. The ability to formulate problems and use heuristic methods to solve them. The ability to critically use the methods of modern science in practice. The ability to assess the quality of advanced technologies and equipment in an expert manner. Ability to make a technical and economic comparison of various modifications of technological machines and equipment	5	V	V			
21	Project Management	The discipline studies the components of project management based on modern behavioral models of project-oriented business development management. The program is based on the international standards PMI PMBOK, IPMA ICB and the standards of the Republic of Kazakhstan in the field of project management. The features of organizational management of business development through the interaction of strategic, project and operational management are studied	5			V	V	
22	The use of digital technology in the design and construction of technological machines	To acquaint undergraduates with the use of digital systems for designing technological machines and equipment, modern digital developments and the main directions of development of	5	V	V			

		digital designing and designing technological machines, as well as with the technological preparation of their						
		production. To give undergraduates						
		knowledge in the field of digital systems						
		for designing technological machines						
		and equipment for mining, metallurgical						
		and oil and gas production, to acquaint						
		with modern developments and main						
		directions of development of digital						
		design of technological machines and						
		production preparation						
23		Study of methods of digital diagnostics,	5		V	v		
		rules and conditions of work in the field						
		of determining the technical condition of						
		equipment; obtaining practical skills in						
		the use of non-destructive testing						
		methods to assess the technical condition						
		and determine the residual life of						
		technological machines and equipment						
		of the mining and metallurgical and oil						
	Disided and distance of	and gas industries; the ability to						
	Digital monitoring of	calculate the reliability of technological						
	machines and equipment	equipment and individual components and mechanisms, drives of technological						
		equipment and special devices; to						
		monitor the current parameters and						
		actual performance of technological						
		equipment in accordance with the						
		requirements of regulatory and technical						
		documentation to identify possible						
		deviations; skills in diagnosing the						
		causes of possible malfunctions and						
		system failures to select methods and						

						1	l	l		
		ways to eliminate them; organization of								
		work on troubleshooting, equipment								
		failures and repair of technological								
		equipment within their competence								
24	Innovative methods for	The course is aimed at studying	5		V	V				
	repairing machine parts	specialists with modern knowledge on								
		the technology of restoring specific parts								
		of mining, metallurgical and oil and gas								
		production equipment. In the process of								
		mastering this discipline, students								
		become familiar with the principles of								
		choosing a rational technological								
		process for restoring and strengthening								
		parts of mining, metallurgical and oil								
		and gas production, depending on the								
		type of wear								
25	Theory and practice of	On the basis of studying of the given	5	V			v			
	operation and repair of	course the master will receive								
	hydro machines and	representation about forms and methods								
	compressors	of operation and repair of the oil and gas								
		equipment, features of their service and								
		repair in field conditions and bases of								
		industrial service. Will master the basic								
		receptions of operation and equipment								
		repair; rules of formation of industrial								
		divisions, their structure and acquisition								
		by brigades. The organisation of								
		productions of structural divisions.								
		Forms and rules of interaction with the								
		foreign enterprises, specialisation and								
		cooperation in industrial activity.								
		Knowledge of these features will help								
		fast adaptation of the expert with								
		practical activities, to carrying out of the								

		analysis of efficiency of activity of					
		various divisions					
26	Innovative construction materials of technological machines	A historical overview of the use of materials, the basic concepts of materials: classification of modern materials (metallic and non-metallic materials, ferrous and non-ferrous metals	5		V	V	
		and their alloys), areas of application of materials; The main properties of materials: physical, chemical, mechanical and technological, structure of materials: crystallization process, types of crystal lattices, phases in alloys; Alloy state diagrams: state diagrams of double alloys, state diagram of ironcarbon alloys; Heat treatment of metals and alloys: the main types of heat treatment, chemical-thermal and					
27	Lubricants and lubrication system for technological machines and equipment	thermomechanical treatment The course is aimed at studying the hydrodynamic theory of lubrication, where the viscous flow for a Newtonian fluid, the basic equations of hydrodynamics, the continuity equation, the equation of motion (the Navier-Stokes equation) and the energy equation will be considered. Issues related to modern lubricants used in technology, their distinctive qualitative properties, means and devices for carrying out lubricating operations will also be considered. During the practical classes, calculations of the friction features in the hydrodynamic lubrication	5	V	V		

	mode, the presence of a lubricating film					
	between the rubbing surfaces, friction					
	problems in the hydrodynamic					
	lubrication mode according to Couette's					
	law will be carried out.					

5. Curriculum of educational program

«APPROVED»
Decision of the Academic Council
NPJSC«KazNRTU
named after K.Satbayev»
dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

Academic year 2925-2926 (Spring, Autumn)
Group of educational programs MH93 - "Mechanics and metal working"

Educational program 7M97111 - "Digital Engineering of Machines and Equipment"

The awarded academic degree Master of Technical Sciences

Form and duration of study full time (scientific and pedagogical track) - 2 years

Discipline				Total	Total	lek/lab/pr	in hours	Form of	Allocatio		2 course		
code	Name of disciplines	Block	Cycle	ECTS	hours	Contact hours	SIS (including	control	1 00	urse	2 co	urse	Prerequisites
				credits		nours	TSIS)		1 sem	2 sem	3 sem	4 sem	1
	C	YCLE	OF GE	NERAL I	EDUCA	TION DISC	CIPLINES (GE	ED)					
			CYCI	E OF B	ASIC DI	SCIPLINE	S (BD)						
		M-1.	Module	of basic	training	g (universi	ty component)						
HUM212	History and philosophy of science		BD, UC	3	90	15/0/15	60	E	3				
HUM213	Higher school pedagogy		BD, UC	3	90	15/0/15	60	Е	3				
LNG213	Foreign language (professional)		BD, UC	3	90	0/0/30	60	Е		3			
HUM214	Psychology of management		BD, UC	3	90	15/0/15	60	Е		3			
TEC701	Intellectual Property Protection	1	BD, CCH	5	150	30/0/15	105	Е		5			
TEC702	Licensing and copyright	1	BD, CCH	5	150	30/0/15	105	Е		5			
MNG781	Intellectual property and research	1	BD, CCH	5	150	30/0/15	105	Е		5			
TEC297	Innovative installation and commissioning methods for machines and equipment	2	BD, CCH	5	150	30/0/15	105	Е		5			
TEC700	The system of full maintenance Technological machines and equipment	2	BD, CCH	5	150	30/0/15	105	Е		5			
TEC706	Innovative drives of machinery and equipment	1	BD, CCH	5	150	30/0/15	105	Е			5		
TEC707	Innovative technologies for monitoring and diagnosing the state of technological machines	1	BD, CCH	5	150	30/0/15	105	Е			5		
MNG782	Sustainable development strategies	1	BD, CCH	5	150	30/0/15	105	Е			5		
				4-3.Prac	tice-oric	nted modu	ıle						
AAP273	Pedagogical practice		BD, UC	8				R		8			
			CYCLE	OF PRO	OFILE I	DISCIPLIN	(ES (PD)						
	M-2. Module	of pro	fession:	al activity	y (unive	rsity comp	onent, compor	ent of cho	ice)				
TEC710	Predictive maintenance systems for process equipment		PD, UC	5	150	30/0/15	105	Е	5				
TEC726	3D modeling of technological machines and equipment		PD, UC	5	150	30/0/15	105	Е	5				
TEC715	Intelligent management of technological equipment complexes	1	PD, CCH	5	150	30/0/15	105	Е	5				
TEC716	Heattechnical equipment and power plants	1	PD, CCH	5	150	30/0/15	105	Е	5				
TEC727	Engineering analysis in the creation and operation of technological machines	2	PD, CCH	5	150	30/0/15	105	Е	5				
TEC719	Innovative technologies in the practice of maintenance and repair of technological machines	2	PD, CCH	5	150	30/0/15	105	Е	5				
MNG705	Project Munagement	2	PD, CCH	5	150	30/0/15	105	Е	5				

TEC200	Methods and means of scientific research		PD, UC	5	150	30/0/15	105	Е		5							
TEC703	Digital methods and means of measuring the parameters of technological machines		PD, UC	5	150	30/0/15	105	E			5						
TEC711	The use of digital technology in the design and construction of technological machines	1	PD, CCH	5	150	30/0/15	105	E			5						
TEC705	Digital monitoring of machines and equipment	1	PD, CCH	5	150	30/0/15	105	E			5						
TEC713	Innovative methods for repairing machine parts	2	PD, CCH	5	150	30/0/15	105	E			5						
TEC714	Theory and practice of operation and repair of hydro machines and compressors	2	PD, CCH	5	150	30/0/15	105	Е			5						
TEC718	Innovative construction materials of technological machines	3	PD, CCH	5	150	30/0/15	105	Е			5						
TEC717	Lubricants and lubrication system for technological machines and equipment	3	PD, CCH	5	150	30/0/15	105	Е			5						
	M-3,Practice-oriented module																
AAP269	Research practice		PD, UC	8				R				8					
			M-4	4. Experi	mental r	esearch m	odule										
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R	4								
AAP272	Research work of a master's student, including internship and completion of a master's thesis		RWMS	1				R		1							
AAP254	Research work of a master's student, including internship and completion of a master's thesis		RWMS	5				R			5						
AAP255	Research work of a master's student, including internship and completion of a master's thesis		RWMS	14				R				14					
M-5. Module of final attestation																	
ECA212	Registration and protection of the master thesis		FA	8								8.					
	Total based on	UNIV	ERSITY						30	30	30	30					
	Total based on UNIVERSITY:									(0)	6	i0					

Number of credits for the entire period of study

Cycle code	Cycles of disciplines		Credits		
C.yele code	Cycles of disciplines	Required component (RC)	University component (UC)	Component of choice (CCH)	Total
GED	Cycle of general education disciplines	0	0	0	0
BD	Cycle of basic disciplines	0	20	15	35
PD	Cycle of profile disciplines	0	28	25	53
	Total for theoretical training:	0	48	40	88
RWMS	Research Work of Master's Student				24
ERWMS	Experimental Research Work of Master's Student				0
FA	Final attestation.				8
	TOTAL:				120

Shakenov A. T.

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Minutes No 3 dated 20.12.2024

Decision of the Academic Council of the Institute. Minutes No. 3 dated 19.12.2024

	es agent	•

Governing Board member - Vice-Rector for Academic Affairs Uskenbuyeva R. K.

Approved:

Acknowledged

Vice Provost on academic development Kalpeyeva Z. B. Head of Department - Department of Educational Program

Zhumagaliyeva A. S. Management and Academic-Methodological Work Director of the Institute - A.Burkitbuev Institute of Energy Yelemesov K...

and Mechanical Engineering Department Chair - Technological machines and equipment Kaliyev B. . Representative of the Academic Committee from Employers

